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Abstract. 

The principle of unchanging total concentration as described by Oldham and Feldberg1 is 

invoked to analyze systems comprising a redox pair ( 1

1X
z

and 2

2X
z

) plus one or more non-

electroactive ions (
jmax43

jmax43 X...X,X
zzz

).  The principle states that: 

In this particular application the “principle” allows quantification of the electrochemically 

induced concentration changes at the electrode surface given the requirement that all difffusion 

coefficients are identical, the bulk concentrations, the surface boundary condition ( 0

1

0

2 /  xx cc ) the 

constraint of electroneutrality, and a  Boltzmann-like relationship correlating surface 0

3j





xc  and 

bulk bulk

3jc concentrations for species j > 3. The surface concentrations coupled with known values 

of the partial molar volumes and molecular masses, can provide an estimate of the density 

gradients within the depletion region at electrode surface; those gradients in turn can induce 

convection. 

Introduction. 

The operative mathematical constraint of the principle of unchanging total concentration 

(henceforth to be referred to as “the principle” or as “the constraint of eqn. 1” or simply as SP) 

was discussed by Oldham and Feldberg:  

*This work is dedicated to Prof. Allen J. Bard – a revered colleague and a revered friend.
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1 

where cj (moles cm– 3) is the concentration of the jth species at any point (x, y, z) in the solution.  

Eqn. 1 holds  as long as: 

 diffusion coefficients of all species are identical.

 electroneutrality obtains throughout the solution (deviations from electroneutrality in the

vicinity of the double layer are ignored):

 2 

 transport is governed by the Nernst-Planck expression (modified to account for

convection if needed):

3 

Where Φ potential at x, y and z, D (cm2/s) is the common diffusion coefficient,  (cm/s) is 

the solution velocity, F, R  and T  have their usual significance; the operator  is defined 

by: 

4 

 solute numbers remain constant, i.e., no homogeneous reactions of the form A   nB;

no heterogeneous reactions of the form  nB  e   A (where n > 2), no ion pairing, no

desorption-adsorption processes.

When these criteria obtain, the validity of eqn. 1 is independent of the electrode size and shape 

and of the electrochemical protocol.   

The experiment of interest involves a system with an initially present redox moiety 1

1X
z

at bulk 

concentration 
bulk

1c ; the concentration of the complementary 2

2X
z

redox species will usually be 

zero but need not be. The notational protocol reserves indices 1 and 2 for the redox pair and 

indices > 3 for any number of additional electroinactive ionic species: 
3j

3jX 



z
. Bulk concentrations 
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bulk

3jc  are set to meet the condition of electroneutrality (eqn.  2).  In principle, those species j > 3 

can be neutral but that case is uninteresting and would produce
bulk

j

0

j cc x 
. This will become 

clearer in later discussion. 

The initial boundary condition is consistent with the ratio 
bulk

1

bulk

2

0

1

0

2 // cccc xx 
.  The 

electrochemical perturbation of the system is that required to reset the ratio
0

1

0

2 /  xx cc   D  

defined by. 

5 

 

Alternatively one can also define D  (the fraction of conversion of 1

1X
z

 to 2

2X
z

at x = 0): 

6 

 

In principle, the value of D (or) could be stepped to any desired new value by changing the 

electrode potential – easily accomplished if the redox couple is reversible and if there is no 

significant uncompensated resistance (Ru) – unlikely with low supporting electrolyte. However,  

Ru can be minimized by clever cell design.  Diminishing Ru electronically by positive feedback.2 

is not so easily accomplished since Ru is a function of solution composition which may be 

changing as a function of time. If the only interest is the limiting case where D that can be 

accomplished rather straightforwardly by setting Eapplied –E0 sufficiently positive (for oxidation of 

1

1X
z

to 2

2X
z

) or sufficiently negative (for reduction of 1

1X
z

to 2

2X
z

).   

The objective of the present work is twofold:  

1. Use the principle of unchanging total concentration to deduce all the surface 

concentrations 
0

j

xc (moles cm3) given the value of D , all the 
bulk

jc (moles cm3) values 

and their associated charges zj .  

2. Use the 
0

j

xc  and 
bulk

jc values to estimate the difference between the density of the 

solution at x = 0 and the density of the bulk solution. This may help to sharpen the 

0

1

0

2

01

02
D

][X

][X
1

2







 
x

x

x

z

x

z

c

c


D

D
D

D

D
D

1
or       

1 

















 4  
 

distinctions between convection produced by electrochemically induced density changes 

significant and the “spontaneous” or natural convection 3    

Theory:  

In the present analysis the principle of unchanging total concentration is invoked to deduce all 

the surface concentrations 
0

j

xc following a change in the electrode potential to effect D at the 

electrode surface (see eqn. 4).  Heretofore, only the solution for the 3-species problem has been 

discussed, see e.g. Oldham and Feldberg1.  The present analysis reveals a straightforward (albeit 

iterative) solution to compute 
0

2j





xc  when  jmax > 3.  The 3-species problem is a subset of that 

more complete treatment. The earlier study of the principle evolved from our interest at the time 

in systems involving little or no added supporting electrolyte. Numerous works have focused on 

fluxes 0j )d/(d xxcD  as a function of these same variables 4-8; however, it is the values of 
0

j

xc

(and not the fluxes) that are of primary interest in the present work because of their relevance to 

the density of the solution in the depletion region adjacent to the electrode surface. 

Consequently, I do not attempt to deduce the fluxes (and currents) – a complex analysis; the 

results will depend upon the size and shape of the electrode, time (if the system is not at steady-

state) and upon the electrochemical protocol – arguably unnecessary for the present purposes.  

 

The 3-species problem. 

It is instructive to review first the solution for the 3-species problem which can be solved explicitly. 

1 PS is directly evaluated from eqn. 1: 

7 

    

It is also the case that: 
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With rearrangement this becomes: 
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Invoking the electroneutrality constraint (eqn.  2) and eqn. 7 leads to: 

10 

 

Then: 

11 

 

Equating eqns. 8 and 11 gives 

12 

 

 

Then:  

13 

 

 

  

14 

 

 

15 

 

3

0

3

0

22

D

1
3

0

32

0

21

0

10 zccz
z

zczczc xxxxx  













0

2

3

2

D

1

0

3












 xx c
z

z
z

c


 


































 

3

2

D

1

D

0

2

3

2

D

1

0

2

0

2DP

1
11

z

z
z

c
z

z
z

ccS xxx 





































































2

D

1

D

3

3P

3

2

D

1

D

P0

2
1

1
1

1

z
z

z

zS

z

z
z

S
c x











































2

D

1

D

3D

3P

D

0

20

1

1
1 z

z
z

zSc
c

x
x






0

2

D

P

0

3

1
1 











 xx cSc


   
   2D1D3

2D1P0

2

0

1P

0

3
1 zzz

zzS
ccSc xxx








 



 6  
 

The results for two examples of 3-species systems are summarized in Table 1.  For example 1A 

the two species are a singly positively charged redox moiety and its corresponding negatively 

charged counter ion. For this example, species 2 has zero charge so the redox process is a 1-

electron reduction. The species distributions are shown for D = 0.25, 0.5, 0.75 and 0.999999.  

The possibly surprising result is that the final concentration of 
bulk

1

0

2 2ccx 
, a result that has been 

theoretically explored and discussed1 along with several other 3-species variations.1 For the 

example shown in Table 1B the initial species are the same as for 1A.  However, the redox 

product is now doubly positively charged so the redox process was a 1-electron oxidation.   

The general solution for 3jmax  . 

The 3-species problem involved evaluation of three unknowns (
0

1

xc ,
0

2

xc and 
0

3

xc ) from three 

equations (eqns. 1, 2 and 5).  For each added species there will be an additional unknown whose 

evaluation requires an additional equation.  When the surface fluxes are zero, as they must be at 

all times for species 3j , the Nernst-Planck equation (eqn. 3) leads to the Boltzmann 

relationship for those species: 

  16 

where:  

    17 

 

Eqn.   16 is reminiscent of the expression used to derive the Gouy-Chapman equation,2 

but without the constraint of electroneutrality. Note that when 3jz = 0 bulk

3j

0

3j 



  cc x . 

The constraints of eqns. 1 and 2 are now: 

   

      18 
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      19 

 

Following the approach described in the 3-species model and introducing the boundary condition 

(eqn. 5): 

20 

 

Rearranging and introducing the Boltzmann relationship (eqn.   16): 
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Invoking the charge neutrality constraint, eqn. 4, gives:  

 

22 

Then 

23 
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or 

25 

 

When jmax = 3  can be solved for directly. That is easily seen by noting that for jmax = 3 eqn. 24 

can be written as: 

 

26 

 

Replacing  3

bulk

3 exp zc   by 
0

3

xc (see eqn.   16) and rearranging gives: 
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Eqn. 27 is identical to eqn. 15 directly deduced for the 3-species system. When j > 3 solving for 

the value of   (eqn. 26) must be solved iteratively: the bisection approach is relatively easy to 

implement (e.g., compared to Newton-Raphson method) and is adequate for the present 

purposes. Some sample results are shown in Table 2 for 5-species and 4-species systems. 

A 5-species system allows straightforward examination of what happens when excess electrolyte 
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not the case when there is no added supporting electrolyte (see Table 1).  Also shown in Table 2 

are some values of the surface concentrations computed by direct explicit finite-difference 

simulation.7. We believe that this confirms that the Boltzmann expression, eqn.   16, is 

producing the correct and unique result.    
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Computing the electrochemically induced density change  at x = 0. 

In the previous segment I showed that the surface concentrations, 
0

j

xc , can be deduced given 

identical diffusion coefficients), set values of 
bulk

jc associated with a particular mechanistic 

scheme and the value of D (or D). It is then possible to estimate the difference between the 

density of the solution at  x = 0 following the electrochemical perturbation and the density of the 

bulk solution if the single-ion or neutral partial molar volumes, j , are known. To further 

simplify this analysis I assume that the partial molar density (PMD) and apparent molar density 

(AMD) are the same. Implicit in that assumption is the added assumption that the solute species 

behave independently and are additive.  The density of the bulk solution will be: 

 

  28 

 

where S  (g cm3) is the density of the solvent and Mj (g mole1) is the molecular mass of 

species j. The analogous equation can be written for the density at the surface:  
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For the most part the literature values of mole/cm10 than less are 33

j  (see, e.g. 9-12), values of 

 jM are less than g/mole01 3 , assigned values of 0
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j  of  valuescomputed and xcc are less than

 10 5 3moles/cm  (= 0.01 M).  Thus the following set of conditions will generally be fulfilled: 
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
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
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expression for S/  .   One implication is that the convectively induced current component 

will be proportional to  and that will be true only as long as the system is at steady-state or as 

long as the dimensions of the depletion layer are the same. However, it should be noted that the 

resultant value of S/  is much smaller than unity and involves taking the difference of two 

larger and (usually) positive terms. As noted earlier it is possible for jjc values to be negative9-

11; jjcM  terms are always positive.  

Conclusions.  

The present analysis offers some theoretical insights regarding the principle of unchanging total 

concentration in multispecies systems1. One of the interesting consquences of the application of 

that principle is that the surface concentrations of all species (the redox pair and any number of 

non-electroactive ions) can be definitively deduced for a given interfacial perturbation. To the 

best of my knowledge has been done only for a 3-species system comprising the redox pair and a 

counterion. The generality and simplicity of the approach is both surprising and vexing – I was 

concerned that the formalism I used might not be producing a unique result. However, direct 

explicit finite-difference simulation confirmed the result and, by implication, also confirmed the 

validity of the use of the Boltzmann expression (eqn. 16) to correlate 0

j

xc and bulk

jc  for j > 3. A 

rather simplistic analysis was invoked to describe how the partial molar volumes ( j ), 

molecular masses ( jM ), bulk concentrations ( bulk

jc ) and the surface concentrations ( 0

j

xc ) might 

couple to produce a change in the density at the electrode surface. The mathematical expression 

for that is (see eqn. 31 and associated discussion): 

 










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






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

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0

jj

S
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1j

0

jj
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1

/1

1

/1

c

c

c

cM

x

x












 

The values of j , jM , bulk

jc and 0

j

xc are likely to be such that the conditions of eqns. 32 will 

generally be  fulfilled  and the expression for the change in density simplifies to (see eqn. 33 and 

associated discussion): 
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S ///  cMccMc xx  

I say “simplistic” – because the underlying principle of the analysis is based on the premise that 

the diffusion coefficients of all species are identical and that is certainly not likely to be the case. 

That shortcoming can be alleviated by carrying out a full simulation which can take into account 

the size and shape of the electrode, the time duration (if the system is not at steady-state), 

individual Dj values and the density-gradient-induced convection near the electrode surface. The 

driving force for the convection will be the density gradient which will depend upon  and the 

dimensions of the depletion region.  Just how will the magnitude of this density-gradient induced 

current compare to the current attributed to natural convection? 
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Table 1. Values of 
kx cc bul

1

0

j /
 computed for some examples of the 3-species problem. 

 

 

 # 

 

 

J 

 

 

z(j) 

 

 
bulk

1

bulk

j / cc   

 

bulk

1

0

j / ccx
 

3/1

25.0

D

D








  

bulk

1

0

j / ccx
 

0.1

5.0

D

D








 

 

bulk

1

0

j / ccx  

3

75.0

D

D








 

 

bulk

1

0

j / ccx
 

6e1

999999.0

D

D








 

 

 

1A 

1 1 1 6/7 2/3 2/5 2e-6 

2 0 0 2/7 2/3 6/5 2 

3 1 1 6/7 2/3 2/5 2e-6 

  0.1542 0.4054  0.9163  13.12 

|||||| || |||||||| |||||||||||||||||| |||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||| |||||||||||||||||||||||| ||||||||||||||||||||||||||||| 

 

 

1B 

1 1 1 2/3 2/5 2/11 6.66667e-7 

2 2 0 2/9 2/5 6/11 2/3 

3 1 1 1/9 6/5 14/11 4/3 

  0.1054  0.1823 0.2412  0.2877 
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Table 2. V values of 
kx cc bul

1

0

j /
 computed for some examples of the 5-species and 4-species 

systems. Data in parentheses were computed using explicit finite difference simulation.7 

 

 

 # 

 

 

J 

 

 

z(j) 

 

 
bulk

1

bulk

j / cc   

 

bulk

1

0

j / ccx
 

3/1

25.0

D

D








  

bulk

1

0

j / ccx
 

0.1

5.0

D

D








 

 

bulk

1

0

j / ccx  

3

75.0

D

D








 

 

bulk

1

0

j / ccx
 

6e1

999999.0

D

D








 

 

 

2A 

1 1 1 0.7500820 0.5000937 

(0.50252) 

0.2500586 1.00025e-6 

(1.6135e-6) 

2 0 0 0.2500273 0.5000937 

(0.497680) 

0.7501757 1.00025 

(1.0003139) 

3 1 1 0.9998751 0.9997502 

(0.99975) 

0.9996253 0.9995 

(0.9995) 

4 1 1000 1.000125e+3 1.00025e+3 

(1.000249) 

1.0003749e+3 1.0005e3 

(1.0005e3) 

5 1 1000 9.998751e+2 0.99975e+3 

(0.99975e3) 

9.9962529+2 0.9995e+3 

(0.9995e+3) 

  1.249e-4 2.498e-4 3.748e-4  4.998e-4 

|||||| || |||||||| |||||||||||||||||| |||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||| |||||||||||||||||||||||| |||||||||||||||||||||||||||||||| 

 

 

2B 

1 1 1 0.7500819 0.5000937 0.2498714 9.992519e-7 

2 2 0 0.2500273 0.5000937 0.7496141 9.99251e-1 

3 1 1001 1.000875e+3 1.000750 1.001374e3 1.001500+3 

4 1 1000 1.0001249e+3 1.00250 0.9996257+03 0.9995011+3 

  1.249e-4 2.498e-4 3.744e-4 4.997e-4 

 

 

 




